QUESTION ONE:

I. Write the Scientific Terms corresponding to each of the following sentences:

(18x1= 18 marks, 30 min)

No.	Sentences	Scientific Term
1.	A lipoprotein that transport dietary triglycerides to	
	adipose tissues for storage	
2.	A class of lipids composed of sphingosine amino-	
	alcohol, one molecule of fatty acid, and a polar	
	head group.	
3.	An essential fatty acid which serves as a precursor	
	for synthesis of prostaglandins	
4.	A steroidal compound that serves as a precursor	
	for synthesis of vitamin D	
5.	Closely related variants of the same enzyme with	
	the same catalytic functions, but with different	
	physical and chemical properties	
6.	Non-protein organic molecules that are essential	
	for enzyme activity	
7.	The substrate concentration at which the reaction	
	rate is half of Vmax	
8.	A spiral peptide chain held in place by hydrogen	
	bonding between peptide bonds in the same	
	chain.	
9.	The first intermediate with a complete purine ring	
	in purine nucleotides de novo synthesis pathway.	
10.	A pathway that ensures the recycling of purines	
	formed by the degradation of nucleotides.	
11.	The three-dimensional arrangement of	

Department of Biochemistry, Faculty of Pharmacy, Tanta University, Final Biochemistry -1 Exam (PB 302), First Semester, Second-Year Pharm D Pharmacy Students, 14th March/2021

QUESTION TWO:

I. What are the main characteristics of Allosteric Enzymes?

(4 marks, 5 min)

II. In the following diagram, you are provided with 4 types of reactions Reaction A: normal uninhibited reaction

Reactions B, C, and D are performed in the presence of inhibitors

For reactions B, C, and D; Answer the following questions:

(6 marks, 15 min)

	Reaction B	Reaction C	Reaction D
Type of inhibitor			
Effect on V max			
Effect on Km			

QUESTION THREE:

- I. Identify of the following substances:
- (5x 1= 5 marks, 10 min)

II. Match each of the following enzymes in column (A) with its corresponding function in column (B): (8x0.5= 4 marks, 15 min)

(A) Enzyme name	(B) Enzyme function
1. Salivary α -amylase ()	a. Converts some of the lysyl residues in collagen to allysine
2. Thrombin (protease) ()	 b. Breaks the connection to the membrane lipid and releases glypicans
3. Pancreatic α -amylase ()	 c. Cleaves milk sugar producing galactose and glucose
4. Lactase ()	d. Breaks some α -(1 \rightarrow 4) bonds of dietary starch in mouth
5. Isomalt <u>as</u> e ()	 e. Cleaves the α-(1→4) bond in isomaltose, producing glucose
6. Lysyl hydroxylase ()	f. Catalyzes the conversion of fibrinogen to fibrin
7. Lysyl oxidase ()	 g. Converts lysine into hydroxylysine using vit C and molecular oxygen
8. Phospholipase ()	h. Cleaves the α -(1 \rightarrow 6) bond in isomaltose, producing glucose
	i. Breaks α -(1 \rightarrow 4) bonds of dextrin in the small intestine

III.According to the following shuttle in the corresponding diagram answer
the following question:(7x1= 7 marks, 20 min)

- 1- This shuttle is called
- 2- The enzyme **(A)** which catalyzes conversion of dihydroxyacetone phosphate to glycerol 3-phosphate is called
- 3- Is this shuttle mechanism used to transport NADH from the cytosol into the mitochondria for ATP production?
 - A) Yes B) No
- 4- Is this shuttle the dominant pathway for aerobic oxidation of cytosolic NADH in heart and muscle?
 - A) Yes B) No
- 5- This shuttle yields ATPs for each cytosolic NADH oxidized
 - A) Two B) Three C) Four
- 6- The P/O ratio of FADH2 equal to = 2/1, give the reason?

7- Mitochondria is the site of oxidative phosphorylation, give the reason?

QUESTION FOUR:

Select the appropriate structure form (A) to (I) that corresponds to each of the descriptions from (1) to (6): (6x1=6 points, 25 min)

Descriptions	
1. Amino acid formed at the isoelectric point (PI) which is electrically neutral.	
2. It is a non-essential amino acid that contributes to nitrogen atoms of both purine and pyrimidine rings.	

3. A neurotransmitter involved in the regulation of sleepiness and wakefulness, that is synthesized from tryptophan.	
4. Non-essential amino acid that has a secondary amino group and is frequently referred as to an "imino acid".	
5. Non-essential amino acid that is optically inactive and involved in the <i>de novo</i> synthesis of purine nucleotides and synthesis of serine.	
6. It's the activated sugar intermediate used as a substrate for <i>de novo</i> synthesis of purine nucleotides as well as the starting material in the salvage pathway.	

Best wishes for all,,,,,,,